Math 113 (Calculus II)
 Midterm Exam 1
 Solutions

Instructions:

- Work on scratch paper will not be graded.
- For questions 6 to 11, show all your work in the space provided. Full credit will be given only if the necessary work is shown justifying your answer. Please write neatly.
- Should you have need for more space than is allotted to answer a question, use the back of the page the problem is on and indicate this fact.
- Simplify your answers. Expressions such as $\ln (1), e^{0}, \sin (\pi / 2)$, etc. must be simplified for full credit.
- Calculators are not allowed.

For Instructor use only.

$\#$	Possible	Earned
MC	15	
6 a	15	
6 d	10	
7	5	
8	10	
9 a	5	
9 b	5	
Sub	65	

$\#$	Possible	Earned
9 c	5	
9 d	5	
9 e	5	
9 f	5	
10	5	
11 a	5	
11 b	5	
Sub	35	
Total	100	

Multiple Choice. Fill in the answer to each problem on your computer-scored answer sheet. Make sure your name, section and instructor are on that sheet.

1. Find the volume of the solid obtained by rotating the region bounded by the curves $y=\sec (x)$, $y=0, x=0, x=\frac{\pi}{4}$ about the x-axis.
a) 1
b) 2
c) 3
d) π
e) $\frac{\pi}{2}$
f) $\frac{\pi}{3}$
g) None of the above

ANSWER: D
2. Find the average value of the function $f(x)=\sqrt[3]{x}$ on the interval $[1,8]$.
a) 12
b) $\frac{12}{7}$
c) $\frac{45}{4}$
d) $\frac{3}{2}$
e) $\frac{3}{14}$
f) $\frac{45}{28}$
g) None of the above

ANSWER: F
3. If $f(1)=2, f(4)=7, f^{\prime}(1)=5, f^{\prime}(4)=3$, and $f^{\prime \prime}(x)$ is continuous, what is $\int_{1}^{4} x f^{\prime \prime}(x) d x$?
a) 9
b) -2
c) 12
d) -1
e) 2
f) None of the above.

ANSWER: E
4. What is $\int_{0}^{\frac{\pi}{4}} \sin ^{2}(2 \theta) d \theta$?
a) 1
b) 0
c) $\frac{1}{2}$
d) $\frac{\pi}{8}$
e) $\frac{\pi-2}{8}$
f) None of the above
5. What is the best form for the partial fraction decomposition of $\frac{2 x+1}{(x+1)^{3}\left(x^{2}+4\right)^{2}}$?
a) $\frac{A}{(x+1)^{3}}+\frac{B x+C}{\left(x^{2}+4\right)^{2}}$
b) $\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+1)^{3}}+\frac{D x+E}{x^{2}+4}+\frac{F x+G}{\left(x^{2}+4\right)^{2}}$
c) $\frac{A}{x+1}+\frac{B}{(x+1)^{3}}+\frac{C x+D}{x^{2}+4}$
d) $\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+1)^{3}}+\frac{D}{x^{2}+4}+\frac{E}{\left(x^{2}+4\right)^{2}}$
e) $\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+1)^{3}}+\frac{D x+E}{x^{2}+4}+\frac{F x+G}{(x+1)^{3}\left(x^{2}+4\right)^{2}}$
f) None of the above

ANSWER: B

Free response: Write your solution and answer in the space provided. Answers not placed in this space will be ignored.
6. Consider the region between the curves $y=5 x$ and $y=x^{2}$ in the first quadrant.
(a) (15 points) Set up an integral for the area of the region bounded by the curves. DO NOT EVALUATE.
ANSWER: $\int_{0}^{5} 5 x-x^{2} d x$ or $\int_{0}^{25} \sqrt{y}-\frac{y}{5} d y$
(b) Set up an integral for the volume obtained when the region is rotated about the x-axis. DO NOT EVALUATE.
ANSWER: $\int_{0}^{5} \pi\left((5 x)^{2}-x^{4}\right) d x$ or $\int_{0}^{25} 2 \pi y\left(\sqrt{y}-\frac{y}{5}\right) d y$
(c) Set up an integral for the volume obtained when the region is rotated about the y-axis. DO NOT EVALUATE.
ANSWER: $\int_{0}^{25} \pi\left(y-\frac{y^{2}}{25}\right) d y$ or $\int_{0}^{5} 2 \pi x\left(5 x-x^{2}\right) d x$
(d) (10 points) Set up an integral for the volume obtained when the region is rotated about the line $y=-2$. DO NOT EVALUATE.
ANSWER: $\int_{0}^{5} \pi\left[(5 x+2)^{2}-\left(x^{2}+2\right)^{2}\right] d x$ or $\int_{0}^{25} 2 \pi(y+2)\left(\sqrt{y}-\frac{y}{5}\right) d y$
(e) Set up an integral for the volume obtained when the region is rotated about the line $x=-3$. DO NOT EVALUATE.
ANSWER: $\int_{0}^{25} \pi\left[(\sqrt{y}+3)^{2}-\left(\frac{y}{5}+3\right)^{2}\right] d y$ or $\int_{0}^{5} 2 \pi(x+3)\left(5 x-x^{2}\right) d x$
7. (5 points) A $12-\mathrm{ft}$ chain weighs 36 lbs and hangs over the edge of a 20 ft high building. How much work is done in pulling the chain to the top of the building?
ANSWER:
The chain weighs $\frac{36}{12}$ lbs per foot, or 3 lbs per foot. The work to raise one slice of length $d z$ is force times distance, so it is $W_{\text {slice }}=3 z d z$. Thus the total work is $W=\int_{0}^{12} 3 z d z=\left.\frac{3}{2} z^{2}\right|_{0} ^{12}=$ $\frac{3}{2}(12)^{2}=3(72)=216 \mathrm{ft}-\mathrm{lb}$.
8. (10 points) The base of a solid is a circular disk with radius 3 . Find the volume of the solid if parallel cross-sections perpendicular to the base are isosceles right triangles with one of the two equal sides lying along the base.

Answer:
The volume of a slice is the area of the triangle times the width of the triangle, so it is $V_{\text {slice }}=\frac{1}{2}(2 x)^{2} d y=2 x^{2} d y$. But we need x in terms of y, so we use the equation of the circle to get $x=\sqrt{9-y^{2}}$. Thus our volume is:

$$
\begin{aligned}
V & =2 \int_{0}^{3} 2\left(\sqrt{9-y^{2}}\right)^{2} d y \\
& =4 \int_{0}^{3} 9-y^{2} d y \\
& =4\left(9 y-\frac{1}{3} y^{3}\right)_{0}^{3} \\
& =4\left(9(3)-\frac{1}{3} 27\right) \\
& =4(27-9) \\
& =72
\end{aligned}
$$

9. Integrate the following and show all of your work:
(a) (5 points) $\int \sin ^{6} x \cos ^{3} x d x$

Answer:

$$
\begin{aligned}
\int \sin ^{6} x \cos ^{3} x d x & =\int \sin ^{6} x\left(1-\sin ^{2} x\right) \cos x d x \text { let } u=\sin x, \text { then } d u=\cos x d x \\
& =\int u^{6}\left(1-u^{2}\right) d u \\
& =\int u^{6}-u^{8} d u \\
& =\frac{1}{7} u^{7}-\frac{1}{9} u^{9}+C \\
& =\frac{1}{7} \sin ^{7} x-\frac{1}{9} \sin ^{9} x+C
\end{aligned}
$$

(b) (5 points) $\int t^{5} \ln t d t$

Answer:

$$
\begin{aligned}
& \text { Integration by parts: } \begin{aligned}
& u=\ln t \quad d v=t^{5} d t \\
& d u=\frac{1}{t} d t \quad v=\frac{1}{6} t^{6}
\end{aligned} \\
& \begin{aligned}
\int_{2}^{6} t^{5} \ln t d t & =\frac{1}{6} t^{6} \ln t-\int \frac{1}{6} t^{5} d t \\
& =\left[\frac{1}{6} t^{6} \ln t-\frac{1}{36} t^{6}\right]_{2}^{6} \\
& =\frac{1}{6}(6)^{6} \ln 6-\frac{1}{36}(6)^{6}-\frac{1}{6}(2)^{6} \ln 2+\frac{1}{36}(2)^{6}
\end{aligned}
\end{aligned}
$$

(c) $\left(5\right.$ points) $\int \frac{\ln (\ln x)}{x \ln x} d x$

Answer:
Let $u=\ln x$. Then $d u=\frac{1}{x} d x$. Thus we have

$$
\begin{aligned}
\int \frac{\ln \ln x}{x \ln x} d x & =\int \frac{\ln u}{u} d u \text { Let } v=\ln u, \text { then } d v=\frac{1}{u} d u \\
& =\int v d v \\
& =\frac{1}{2} v^{2}+C \\
& =\frac{1}{2}(\ln u)^{2}+C \\
& =\frac{1}{2}(\ln \ln x)^{2}+C
\end{aligned}
$$

(d) (5 points) $\int x \sin 7 x d x$

Answer:
Integration by parts: $\begin{array}{ll}u=x & d v=\sin 7 x d x \\ d u=d x & v=\frac{-1}{7} \cos 7 x\end{array}$

$$
\begin{aligned}
\int x \sin 7 x d x & =\frac{-x}{7} \cos 7 x-\int \frac{-1}{7} \cos 7 x d x \\
& =\frac{-x}{7} \cos 7 x+\frac{1}{49} \sin 7 x+C
\end{aligned}
$$

(e) (5 points) $\int x^{3} \sqrt{x^{2}+1} d x$

Answer: Let $x=\tan \theta$, then $d x=\sec ^{2} \theta d \theta$.

$$
\begin{aligned}
& \sqrt{\mathrm{x}^{2}+1} \\
& \int x^{3} \sqrt{x^{2}+1} d x=\int \tan ^{3} \theta\left(\tan ^{2} \theta+1\right)^{1 / 2} \sec ^{2} \theta d \theta \\
&=\int \tan ^{3} \theta \sec ^{3} \theta d \theta \\
&=\int\left(\tan ^{2} \theta \sec ^{2} \theta\right) \tan \theta \sec \theta d \theta \\
&=\int\left(\sec ^{2} \theta+1\right) \sec ^{2} \theta \tan \theta \sec \theta d \theta \text { Let } u=\sec \theta, d u=\sec \theta \tan \theta d \theta \\
&=\int\left(u^{2}+1\right) u^{2} d u \\
&=\int u^{4}+u^{2} d u \\
&=\frac{1}{5} u^{5}+\frac{1}{3} u^{3}+C \\
&=\frac{1}{5} \sec ^{5} \theta+\frac{1}{3} \sec ^{3} \theta+C \\
&=\frac{1}{5}\left(x^{2}+1\right)^{5 / 2}+\frac{1}{3}\left(x^{2}+1\right)^{3 / 2}+C
\end{aligned}
$$

(f) (5 points) $\int e^{2 \theta} \cos 4 \theta d \theta$

Answer:

$$
\begin{aligned}
& \text { Integration by parts: } \begin{array}{l}
u=e^{2 \theta} \\
d u=2 e^{2 \theta} d \theta \quad \\
d v=\frac{1}{4} \sin 4 \theta
\end{array} \\
& \int e^{2 \theta} \cos 4 \theta d \theta=\frac{1}{4} e^{2 \theta} \sin 4 \theta-\frac{1}{2} \int e^{2 \theta} \sin 4 \theta d \theta \\
& \quad u=e^{2 \theta} \quad d v=\sin 4 \theta d \theta
\end{aligned}
$$

Integration by parts again:

$$
d u=2 e^{2 \theta} d \theta \quad v=\frac{-1}{4} \cos 4 \theta
$$

$$
\begin{aligned}
\int e^{2 \theta} \cos 4 \theta d \theta & =\frac{1}{4} e^{2 \theta} \sin 4 \theta-\frac{1}{2}\left[\frac{-1}{4} e^{2 \theta} \cos 4 \theta+\int \frac{1}{2} e^{2 \theta} \cos 4 \theta d \theta\right] \\
& =\frac{1}{4} e^{2 \theta} \sin 4 \theta+\frac{1}{8} e^{2 \theta} \cos 4 \theta-\frac{1}{4} \int e^{2 \theta} \cos 4 \theta d \theta \\
\frac{5}{4} \int e^{2 \theta} \cos 4 \theta d \theta & =\frac{1}{4} e^{2 \theta} \sin 4 \theta+\frac{1}{8} e^{2 \theta} \cos 4 \theta+C \\
\int e^{2 \theta} \cos 4 \theta d \theta & =\frac{4}{5}\left[\frac{1}{4} e^{2 \theta} \sin 4 \theta+\frac{1}{8} e^{2 \theta} \cos 4 \theta\right]+C \\
& =\frac{1}{5} e^{2 \theta} \sin 4 \theta+\frac{1}{10} e^{2 \theta} \cos 4 \theta+C
\end{aligned}
$$

10. (5 points) A force of 12 lb is required to hold a spring stretched 3 in . beyond its natural length. How much work is done in stretching it from its natural length to 4 in. beyond its natural length?
ANSWER: Recall that we need our units in feet, so 3 in $=\frac{1}{4}$ foot.

$$
\begin{aligned}
F & =k x \\
12 & =\frac{k}{4} \\
k & =48
\end{aligned}
$$

Thus we have that the work to stretch the spring to 4 in $=\frac{1}{3}$ feet is:

$$
\begin{aligned}
W & =\int_{0}^{\frac{1}{3}} 48 x d x \\
& =\left.24 x^{2}\right|_{0} ^{\frac{1}{3}} \\
& =24\left(\frac{1}{9}\right) \\
& =\frac{8}{3} \mathrm{ft}-\mathrm{lb}
\end{aligned}
$$

11. Integrate the following:
(a) (5 points) $\int x \sqrt{1-x^{4}} d x$

Answer:

Let $x^{2}=\sin \theta$. Then $2 x d x=\cos \theta d \theta$.

$$
\begin{aligned}
\int x \sqrt{1-x^{4}} d x & =\int \frac{1}{2} \sqrt{1-\sin ^{2} \theta} \cos \theta d \theta \\
& =\frac{1}{2} \int \cos ^{2} \theta d \theta \\
& =\frac{1}{2} \int \frac{1}{2}(1+\cos 2 \theta) d \theta \\
& =\frac{1}{4} \int 1+\cos 2 \theta d \theta \\
& =\frac{1}{4}\left(\theta+\frac{1}{2} \sin 2 \theta\right)+C \\
& =\frac{1}{4}\left[\theta+\frac{1}{2}(2 \sin \theta \cos \theta)\right]+C \\
& =\frac{1}{4}\left(\sin ^{-1} x^{2}+x^{2} \sqrt{1-x^{4}}\right)+C
\end{aligned}
$$

(b) (5 points) $\int_{2}^{3} \frac{2 x+3}{(x-1)(x+4)} d x$

ANSWER:
First we need to find the partial fraction decomposition of the integrand.

$$
\begin{aligned}
\frac{2 x+3}{(x-1)(x+4)} & =\frac{A}{x-1}+\frac{B}{x+4} \\
2 x+3 & =A(x+4)+B(x-1)
\end{aligned}
$$

At $x=-4$ we have $2(-4)+3=-5 B$. Thus $B=1$. At $x=1$ we have $2+3=5 A$, so $A=1$ also. Thus our integral becomes:

$$
\begin{aligned}
\int_{2}^{3} \frac{2 x+3}{(x-1)(x+4)} d x & =\int_{2}^{3} \frac{1}{x-1}+\frac{1}{x+4} d x \\
& =\ln |x-1|+\ln |x+4|_{2}^{3} \\
& =\ln 2+\ln 7-(\ln 1+\ln 6) \\
& =\ln 2+\ln 7-\ln 6 \\
& =\ln \frac{14}{6} \\
& =\ln \frac{7}{3}
\end{aligned}
$$

